Pandas : Handling Categorical Data

Pandas’ get_dummies() method used to apply one-hot encoding to categorical data.

Syntax:

pandas.get_dummies(dataprefix=Noneprefix_sep='_'dummy_na=Falsecolumns=None sparse=Falsedrop_first=Falsedtype=None) 

Parameters

data - Series/DataFrame
prefix - (default None)String to append DataFrame column names.
prefix_sep - (str, default ‘_’). prefix separator to use. 
dummy_na - (default False)Add a column to indicate NaNs, if False NaNs are ignored.
columns - (default None)Column names in the DataFrame to be encoded. 
          If None, all categorical features are encoded.
sparse - (default False)encoded columns return in SparseArray(True) or 
         in Numpy Array(False).
drop_first - (default False)Whether to get k-1 dummies out of k categorical levels 
             by removing the first level. 
dtype - (default np.uint8)Data type for new columns. Only a single dtype is allowed.

Example – 1

Let’s see the example to understand how one-hot encoding work with categorical columns.

In [1]:
import pandas as pd
df = pd.DataFrame({'student_name' : ['Tom','Mark','John','Neck'],
                   'Grade' : ['A','C','B','A']})
df
Out[1]:
  student_name Grade
0          Tom     A
1         Mark     C
2         John     B
3         Neck     A
In [2]: new_df = pd.get_dummies(df,columns=['Grade'])

In [3]: new_df
Out[3]:
  student_name  Grade_A  Grade_B  Grade_C
0          Tom        1        0        0
1         Mark        0        0        1
2         John        0        1        0
3         Neck        1        0        0

Example – 2 

Let’s see how the pd.get_dummies() method work with NaN value.

In [4]:
import pandas as pd
import numpy as np
df = pd.DataFrame({'student_name' : ['Tom','Mark','John','Neck'],
                   'Grade' : ['A','C','B',np.nan]})
df
Out[4]:
  student_name Grade
0          Tom     A
1         Mark     C
2         John     B
3         Neck   NaN         # Neck' Grade is NaN
In [5]:
new_df = pd.get_dummies(df,columns=['Grade'])
new_df
Out[5]:
  student_name  Grade_A  Grade_B  Grade_C
0          Tom        1        0        0
1         Mark        0        0        1
2         John        0        1        0
3         Neck        0        0        0

pd.get_dummies() method ignore the NaN value while encoding. If you want to consider the NaN value, use parameter dummy_na = True.

In [6]:
new_df = pd.get_dummies(df,columns=['Grade'],dummy_na=True)   # use dummy_na = True
new_df
Out[6]:
  student_name  Grade_A  Grade_B  Grade_C  Grade_nan
0          Tom        1        0        0          0
1         Mark        0        0        1          0
2         John        0        1        0          0
3         Neck        0        0        0          1

.      .     .

Leave a Reply

Your email address will not be published. Required fields are marked *

Python Pandas Tutorials

Pandas – How to remove DataFrame columns with constant (same) values?

Pandas – How to remove DataFrame columns with only one distinct value?

Pandas – Count unique values for each column of a DataFrame

Pandas – Count missing values (NaN) for each columns in DataFrame

Pandas – MultiIndex

Pandas – Applymap

Pandas – Apply

Pandas – Map

Pandas – Missing Data

Difference between Merge, join, and concatenate

Pandas – Join

pandas : Handling Duplicate Data

Pandas : Data Types

Appending a row to DataFrame

Python Pandas – Merge

Python Pandas – Concatenation & append

Python Pandas – GroupBy

Python Pandas – Visualization

Python Pandas – Options and Customization

Python Pandas – Descriptive Statistics

Python Pandas – Basic functions

Python Pandas – DataFrame

Python Pandas – Series

Python Pandas – Introduction